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a b s t r a c t

We study the interconnectedness of international tourism demand changes among 30
European countries. Using cross-quantilogram analysis, we estimate the strength of
the directional (lead/lag) relationships of the international tourism demand of Euro-
pean countries in percentiles (10th, 50th, 90th). The complex interconnectedness of
international tourism demand is studied within networks, where a fixed number of
vertices represent countries, and oriented edges represent the presence of a directional
relationship between the international tourism demand of two countries. A comparison
of these networks reveals the following regularities. First, we find obvious asymmetry
across percentiles, where demand behaves much more similarly during times of crisis
(10th percentile) compared to tranquil periods (50th percentile). The interconnectedness
of these networks almost diminishes when the international demand for tourism
increases sharply (90th percentile). Second, we observe that the interconnectedness does
not change much among the short- (within 3 months), mid- (up to 6 months) and long-
term (up to 9 months) lead/lag relationships, which leads us to conclude that much of
the interconnectedness of international tourism demand is driven by dependence during
the first three months. On the basis of these findings, we review the possible forces that
may drive the formation of the resulting complex structures using exponential random
graph models. Our third finding is that there is a tendency for the relationships of the
international tourism demand among the various countries to be bidirectional. Finally,
our fourth new finding is that the interconnectedness of markets during sharp declines
in tourism demand tends to increase for Central and Eastern European (CEE) countries,
and those that are less developed in terms of their relative sector size to the size of the
economy.
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1. Introduction

Since the early work of Barabási and Albert [1], networks have been found, created and studied in many socioe-
conomic areas. As is documented in the recent review of Martí et al. [2], in the past few years, networks have been
particularly used in finance [3–5], business and trade [6–10], supply chain networks [11–13], transportation [14–19],
social relationships [20–22] and also in tourism [22–39].

In this study, we contribute to the latter strand of the literature. The tourism sector includes many agents such as
visitors; accommodation providers; food and beverage services; recreation and entertainment; transportation companies;
and travel services, such as travel agencies, travel guides, tour operators and insurance companies, and it is therefore
believed that the tourism sector consists of a complex system of relationships [23]. Motivated by this idea, in this paper,
we study how the international demand for tourism is related among 30 European countries. We take a macro-level
perspective, where countries represent tourism destinations, and international tourist arrivals at a given country represent
the international demand for tourism services in a given country. Therefore, among the many agents that operate in
the tourism sector, we specifically consider international visitors. At the macro-level, we aggregate international demand
across the whole country. We acknowledge that each country can influence local tourism sectors through tourism policies,
however, it is likely that these, in turn, are manifested into the overall level of international tourism demand for the whole
country.

We create a real-world network, where nodes represent countries, and edges are created according to the dependence
measured between the numbers of arrivals of non-residents (demand) to a given country. Such complex networks are
of interest to a wide range of agents. For example, a dense network suggests that the international demand of different
countries is interrelated, and tourism policies, at a country level, could be collaborative (for an example of cross-country
regional collaboration, see [40,41]). Out- and in-degrees can be interpreted as measures of relatedness of among the
tourism policies of countries. Put differently, in-degrees measure the sensitivity of international tourism demand to
the development of international tourism in foreign countries. On the other hand, out-degrees indicate whether the
international tourism demand of a given country could be used to forecast development of international tourism demand
in foreign countries (for example, by including past observations of tourism demand into the forecasting equation of
tourism development of foreign countries).

Real-world networks have already been used to describe the tourism sector [42]. The websites of tourism destinations
on Elba Island showed little interconnectedness in a study conducted by de Fontoura and Baggio [26]. Hernandez and
González-Martel [27] modeled a supply network and the interrelationship among lodging, services and tourist behavior
in the tourism destination of Gran Canaria Island. There was a positive correlation among the degree of substitutability,
closeness centrality, and betweenness centrality for tourism flows in China in a study conducted by Hong and Tao [28].
The binary and value network of tour operators and travel agencies, which are entities of a distribution channel, was
illustrated by Tran et al. [22] in a case study of Hanoi, Vietnam. Networks can be used to help policy makers and tourism
service providers improve their planning of a given destination development [29–35,39].

Our study is most closely related to one conducted by Miguéns and Mendes [36], who created an oriented network
of international tourism arrivals in 2004, with 208 nodes representing both countries and territories. Oriented edges
were created if tourists traveled from node i to node j. The resulting network led to 5775 weights, a dense topological
structure with small shortest paths and exponentially decaying in- and out-degrees. The weights followed a scale-free
power-law distribution. Provenzano et al. [43] created and studied a network of bilateral tourism flows within European
countries using data from the United Nations World Tourism Organization (UNWTO) over the period from 1995 to 2012.
They reveal that the network’s density increased, the average path length decreased, while also tourism evolved towards
higher concentration in a lower number of areas. Our approach differs in several ways. First, compared to Miguéns and
Mendes [36] we use a more homogeneous sample that includes 30 European countries, and each country represents a
node in the network. Our sample selection is motivated by the fact that these countries are in the same region, and
almost all of the countries in our sample are members of the European Union and subject to similar regulations at the
European level. Second, an oriented edge is created if Granger causality in quantiles is confirmed from international
tourism demand of country i to country j. Third, using monthly data from January 2004 to May 2018, we study the
determinants of international tourism demand.

The remainder of this paper is structured as follows. Section 2 presents the data and describes the methodology. In
Section 3, we discuss the results, and Section 4 concludes.

2. Data and methodology

2.1. Data

Tourism demand is, in many cases, measured and represented by data on arrivals [36–38]. In this paper, to proxy for
the international tourism demand, we use data on the arrivals of non-residents at tourist accommodation establishments
in a given country, retrieved from Eurostat. For 30 countries, we obtain monthly data from January 2004 to May 2018.
Let Ai,t denote the arrival, where i is a given country, and t is a given month (t = 13, 14, . . . , T and is the time index).
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Table 1
Characteristics of changes in arrivals — international tourism demand.
Country Mean SD Skew. Kurt. Min. Max. AC(1) KPSS

Spain 0.05 0.08 −0.31 4.41 −0.20 0.32 0.84 0.02
Portugal 0.07 0.09 −0.36 4.21 −0.26 0.29 0.56 0.29
Denmark 0.03 0.08 0.25 3.66 −0.20 0.30 0.61 0.19
Germany 0.05 0.05 −0.29 4.96 −0.11 0.25 0.51 0.05
Greece 0.07 0.11 −0.19 2.82 −0.24 0.39 0.60 0.13
Austria 0.04 0.08 0.28 5.49 −0.25 0.35 −0.41 0.24
Finland 0.04 0.09 −0.20 3.07 −0.22 0.29 0.75 0.04
Sweden 0.05 0.06 −0.18 3.39 −0.15 0.22 0.56 0.29
Switzerland 0.02 0.06 −0.21 2.74 −0.14 0.16 0.63 0.06
France 0.01 0.08 −0.17 4.03 −0.28 0.28 0.37 0.37
Italy 0.03 0.06 0.08 4.80 −0.20 0.27 0.01 0.06
Netherlands 0.05 0.08 −0.37 3.49 −0.16 0.24 0.66 0.32
Norway 0.05 0.09 0.00 3.09 −0.18 0.28 0.59 0.18
United Kingdom 0.03 0.12 0.10 4.93 −0.50 0.42 0.42 0.07
Island 0.17 0.18 1.48 6.69 −0.11 1.03 0.63 0.74
Belgium 0.02 0.08 −0.71 5.34 −0.24 0.28 0.75 0.03
Luxembourg 0.03 0.11 1.42 7.75 −0.26 0.57 0.71 0.09
Slovenia 0.06 0.09 0.06 3.84 −0.17 0.37 0.37 0.14
Cyprus 0.03 0.12 0.53 4.77 −0.32 0.44 0.64 0.54
Hungary 0.05 0.08 −0.29 3.57 −0.23 0.23 0.66 0.23
Romania 0.06 0.10 −0.73 3.12 −0.21 0.27 0.70 0.40
Czech Republic 0.05 0.07 −0.52 4.55 −0.21 0.22 0.49 0.25
Bulgaria 0.07 0.12 0.14 3.94 −0.29 0.45 0.44 0.16
Poland 0.05 0.08 −0.75 3.58 −0.18 0.21 0.68 0.16
Slovakia 0.05 0.13 −1.00 4.12 −0.35 0.28 0.89 0.05
Croatia 0.07 0.11 −0.12 3.82 −0.31 0.37 0.05 0.38
Latvia 0.11 0.14 0.27 3.74 −0.24 0.54 0.76 0.09
Malta 0.05 0.11 −0.19 3.41 −0.25 0.33 0.71 0.25
Estonia 0.04 0.09 0.27 3.07 −0.17 0.31 0.56 0.05
Lithuania 0.09 0.12 0.35 4.91 −0.24 0.52 0.78 0.07

Note: AC(1) denotes the size of the first-order autocorrelation coefficient. KPSS denotes the Sul et al. [44] version of the unit-root test proposed by
Kwiatkovski et al. [45]. Values higher than 0.580 suggest the rejection of the null hypothesis that there is no unit-root.

The cross-quantilogram analysis is based on changes in tourism demand. However, as is usual for tourism activity
indicators, the series of arrivals exhibits a 12-month seasonal pattern. We, therefore, calculate changes in the tourism
demand as:

ri,t =
Ai,t − Ai,t−12

Ai,t−12
(1)

Two percent of the data on arrivals (Ai,t ) contained missing observations that were imputed via interpolation
techniques. For example, if for a given country, i arrivals for January 2006 were missing, we selected only arrivals from
January (to account for the 12-month seasonality), and using these data, we performed a cubic spline interpolation of
the given missing data points. However, if the missing data were at the beginning or at the end of the series, we used a
simple linear time trend interpolation.

The summary characteristics of the changes in international tourism demand (Eq. (1)) are presented in Table 1, which
follows. Several interesting observations can be drawn from these summary statistics. For example, the positive average
change in international tourism demand suggests that in Europe, international tourism demand has increased. The highest
increase was observed for Iceland and Latvia, smaller countries within our sample. In contrast, the smallest increase was
observed for France, which is a large and well-developed tourism destination, where tourism growth might already be
limited. Finally, a common feature of almost all the series is that tourism demand changes are characterized by a mild
persistence, in form of a positive autocorrelation coefficient (0.55 in average), with the exception of Austria.

2.2. Directional predictability in quantiles

Let ri,t denote changes in international tourism demand (Eq. (1)), while in this case i = 1, 2 represents two different
countries. The time series of changes in international tourism demand (ri,t ) is assumed to be strictly stationary. Its
unconditional distribution function is denoted by Fi(.), the unconditional density function as fi(.) and the unconditional
quantile function as qi(τi) = inf {ν : Fi(ν) ≤ τi} for τi ∈ (0, 1).

We are interested in estimating dependence between the event {r1,t ≤ q1,t (τ1)} and {r2,t−k ≤ q2,t−k(τ2)} given integer
k = ±1, ±2, . . ., where in general τ = (τ1, τ2) is an arbitrary pair of quantiles. However, in our analysis, we study only



4 Š. Lyócsa, P. Vašaničová and E. Litavcová / Physica A 526 (2019) 120919

cases where τ1 = τ2. Next, we define a hit function Ψα(u) = I[u < 0]−α, and then the cross-quantilogram is defined as:

ρ(k) =
E[Ψτ1 (r1,t − q1,t (τ1))Ψτ2 (r2,t−k − q2,t−k(τ2))]√

E[Ψ 2
τ1
(r1,t − q1,t (τ1))]

√
E[Ψ 2

τ2
(r2,t−k − q2,t−k(τ2))]

(2)

The cross-quantilogram in Eq. (2) can be understood as a cross-correlation of quantile-hit processes. In a special case,
where the two series are identical, Eq. (2) corresponds to the quantilogram proposed by Linton and Whang [46]. Next,
given the unconditional estimate of quantiles q̂i(τi), the sample cross-quantilogram is defined as:

ρ̂τ (k) =

T∑
t=k+1

Ψτ1 (r1,t − q̂1,t (τ1))Ψτ2 (r2,t−k − q̂2,t−k(τ2))√ T∑
t=k

Ψ 2
τ1
(r1,t − q̂1,t (τ1))

√ T∑
t=k

Ψ 2
τ2
(r2,t−k − q̂2,t−k(τ2))

(3)

The value of Eq. (3) is by construction limited to ρ̂τ (k) ∈ [−1, 1]. We use Eq. (3) to describe the magnitude of the
directional dependence in quantiles of two time series. For example, ρ̂τ (1) = 0 implies that if the international tourism
demand of country 2 is lower (higher) than a given quantile q2(τ2) at time t−1, then it does not help in predicting whether
the international tourism demand of country 1 is lower (higher) than a given quantile q1(τ1) at time t . In our setting, the
lead/lag parameter k controls the delay in the predictability from one time series to another in terms of months.

Given k = 1, 2, . . . , p, we are interested in the following hypothesis, H0 : ρτ (1) = · · · = ρτ (p) = 0, H1 : ∃k, ρτ (k) ̸= 0,
k = 1, 2, . . . , p. Han et al. [47] suggested using a Ljung–Box type of test statistics, as given by:

Q̂τ (p) = T (T + 1)
p∑

k=1

q̂2τ (k)
T − k

(4)

where the critical values are obtained via the stationary bootstrap procedure proposed by Politis and Romano [48], in
which pseudo samples are constructed from blocks of data with random block length. The expected block size has been
identified by Politis and White [49] and Patton et al. [50].

2.3. Cross-quantilogram networks

Let Gp,τ = (V , E) be a graph where the elements of the vertex set V ⊂ C correspond to individual countries; the
elements of the set of edges E ⊂ V × V contains all edges (i, j) between countries i, j ∈ V ; and i ̸= j, i, j = 1, 2, . . . ,N .
A directed edge from country j to country i is constructed if the test statistics (Eq. (4)) for a given p and τ suggests
significance at the given significance level. This procedure leads to a Granger causality-type network [5,51–53]. For a
given country j, the testing procedure for a given p and τ , is repeated 29 times; i.e. if j = 2, then we perform the test for
i = 1, 3, 4, 5, . . . , 30. This may lead to an excessive overall type I error in the tests. We therefore calculate the level of
significance as 0.05/(29 − 1).

In our empirical application, we consider p = 3, 6 and 9. For smaller values of p, for example, 3 (months), we
are estimating short-term lead relationships from one series to another; for higher values of p (6 and 9) we are
estimating mid- and long-term relationships. Finally, the cross-quantilogram analysis is performed for three percentiles,
τ = 0.10, 0.50, 0.90. This approach allows us to study the asymmetric dependence among the international tourism
demand of various countries. The combinations of p and τ lead to the estimation of short- (p = 3), mid- (p = 6), and
long-term (p = 9) directional relationships in the left (τ = 0.10) tail, center (τ = 0.50), and right (τ = 0.90) tail of the
distribution of tourism demand changes; i.e., overall, there are 9 networks.

2.4. Measures of connectedness

First, we use a simple measure of connectedness, the degree of the vertex. As we create and study directed networks,
we consider both in-degree, degin(i), and out-degree degout(i), vertex measures:

degin(i) = |{(j, i) ∈ E; j ∈ V }| (5)

degout(i) = |{(i, j) ∈ E; j ∈ V }| (6)

The |·| denotes the cardinality of the given set. Countries with higher in-degree are more likely to be influenced by
the development of international tourism activity in other countries (in Granger sense).1 Similarly, countries with high

1 When we refer to ‘influence’, we mean in the Granger sense [55].
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Table 2
Centrality measures for cross-quantilogram networks with p = 3.
Country Cross-quantilogram networks, p = 3

10th percentile 50th percentile 90th percentile

out-d. in-d. harmo. out-d. in-d. harmo. out-d. in-d. harmo.

Spain 14 18 18.70 8 3 11.18 0 0 0.00
Portugal 12 12 16.40 3 3 7.59 0 0 0.00
Denmark 8 7 13.41 2 0 7.02 0 1 0.00
Germany 15 5 17.27 1 1 1.92 0 0 0.00
Greece 0 1 0.00 5 6 9.48 0 0 0.00
Austria 0 0 0.00 0 0 0.00 0 0 0.00
Finland 4 14 11.30 1 9 1.56 0 0 0.00
Sweden 4 1 11.23 3 0 9.09 0 0 0.00
Switzerland 1 0 9.14 3 1 8.30 0 0 0.00
France 3 3 10.69 4 2 8.06 0 0 0.00
Italy 2 0 10.76 2 2 6.54 1 0 1.48
Netherlands 12 4 16.32 4 6 8.80 0 0 0.00
Norway 6 4 12.02 8 2 11.09 1 0 1.49
United Kingdom 0 0 0.00 2 4 7.33 0 0 0.00
Island 0 0 0.00 2 4 7.26 1 1 1.49
Belgium 0 1 0.00 3 3 7.47 0 0 0.00
Luxembourg 0 0 0.00 1 0 1.98 0 0 0.00
Slovenia 4 4 10.72 1 2 6.15 0 0 0.00
Cyprus 0 0 0.00 1 3 1.72 0 0 0.00
Hungary 14 16 17.36 2 1 7.13 0 0 0.00
Romania 18 15 19.26 5 6 9.17 0 0 0.00
Czech Republic 9 8 14.15 1 1 5.32 0 0 0.00
Bulgaria 6 8 12.22 2 1 1.99 0 0 0.00
Poland 13 5 17.05 2 2 2.04 0 0 0.00
Slovakia 6 13 12.70 4 4 8.75 1 2 1.05
Croatia 4 4 11.02 2 0 7.27 0 0 0.00
Latvia 5 12 12.26 1 4 5.44 0 0 0.00
Malta 11 6 14.89 6 4 9.32 1 1 0.89
Estonia 0 0 0.00 2 3 6.27 0 0 0.00
Lithuania 9 19 14.39 2 6 2.04 0 0 0.00

Average 6.00 10.11 2.77 6.24 0.17 0.21

Notes: out-d. denotes the out-degree of the vertex, in-d. denotes the in-degree of the vertex, and harmo denotes the harmonic centrality of the vertex, as
in Boldi and Vigna [54].

out-degree are more likely to influence other markets in the network. The vertex degree is a simple measure that identifies
the most influential countries within the network.

Second, we use a global measure of connectedness that attempts to measure the importance of a country within the
whole network of countries. We use harmonic centrality [54] as it is suitable even for networks that are not strongly
connected. Let d(i, j) be the shortest path from vertex i to vertex j. Next, assume that if there is no path between the two
vertices, then d(i, j) = ∞. We conveniently define that 1/∞ = 0. Next, the harmonic centrality of vertex i is defined as:

H(i) =

∑
d(i,j)<∞,i̸=j

1
d(i, j)

(7)

Higher harmonic centrality of a given country implies that the given country is more highly interconnected in the
network; i.e., this country is more important than a country with lower harmonic centrality. When calculating harmonic
centrality, we weight each edge based on the ultrametric distance [56] d(i, j) = [2(1 − ρτ (i,j)(k))]0.5, where ρτ (i,j)(k) is the
strength of the relationship of country i to county j, as estimated in Eq. (3).

2.5. Exponential random graph model

We study the mechanics behind the formation of cross-quantilogram networks of international tourism demand. It is
likely that two or more specific countries are more likely to be connected in terms of their international tourism demand.
The reasons might be very complex, from attracting tourists with similar preferences to geographical or cultural proximity.
We are also interested in whether some network configurations are more likely than others, i.e., whether specific network
configurations (i.e., the reciprocity of edges) are more likely than they would be in a random graph. In addition to network
characteristics, we are also interested in the role of vertex attributes in forming the network.

Let Y be a random network with a fixed number of vertices, N , and oriented edges, where Yi,j = 1 denotes a presence
of an oriented edge from i (i = 1, 2, . . . ,N) to j (j = 1, 2, . . . ,N), i ̸= j, which is denoted by i −→ j. The absence of
an edge is denoted by Yi,j = 0. The observed network is denoted by y. Both the random and observed networks can
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Table 3
Centrality measures for cross-quantilogram networks with p = 6.
Country Cross-quantilogram networks, p = 6

10th percentile 50th percentile 90th percentile

out-d. in-d. harmo. out-d. in-d. harmo. out-d. in-d. harmo.

Spain 14 17 16.87 8 3 11.95 0 0 0.00
Portugal 12 11 15.03 4 4 8.73 0 0 0.00
Denmark 7 6 12.22 1 1 6.72 0 1 0.00
Germany 12 7 14.91 1 2 1.51 2 0 1.69
Greece 2 1 9.62 5 5 10.11 0 0 0.00
Austria 0 0 0.00 0 0 0.00 0 0 0.00
Finland 3 17 8.47 2 9 1.63 0 0 0.00
Sweden 11 1 13.53 3 1 9.65 0 0 0.00
Switzerland 0 0 0.00 2 1 8.51 0 0 0.00
France 5 3 10.53 2 1 7.02 1 0 1.20
Italy 7 0 12.06 3 2 2.77 0 0 0.00
Netherlands 16 3 17.79 5 4 10.00 0 0 0.00
Norway 8 4 12.20 9 2 12.20 0 0 0.00
United Kingdom 0 0 0.00 4 0 9.67 0 0 0.00
Island 0 0 0.00 2 3 8.05 2 0 2.22
Belgium 0 0 0.00 2 2 2.82 1 2 0.67
Luxembourg 0 0 0.00 2 1 6.08 0 0 0.00
Slovenia 4 3 9.70 2 3 7.19 0 0 0.00
Cyprus 0 0 0.00 1 4 1.23 1 1 1.28
Hungary 10 15 14.25 2 1 7.93 0 0 0.00
Romania 18 15 18.25 4 6 9.42 0 0 0.00
Czech Republic 8 7 12.68 2 1 7.83 0 0 0.00
Bulgaria 5 6 10.43 2 2 1.97 0 0 0.00
Poland 15 3 17.37 2 1 2.26 0 0 0.00
Slovakia 5 20 10.84 5 5 10.11 0 1 0.00
Croatia 7 3 11.43 2 0 7.68 0 0 0.00
Latvia 3 17 8.68 1 8 2.47 0 1 0.00
Malta 8 8 12.71 5 3 9.52 1 0 0.87
Estonia 0 0 0.00 3 4 7.36 0 0 0.00
Lithuania 6 19 11.50 1 8 1.19 0 2 0.00

Average 6.20 9.37 2.90 6.45 0.27 0.26

Notes: out-d. denotes the out-degree of the vertex, in-d. denotes the in-degree of the vertex, and harmo denotes the harmonic centrality of the vertex, as
in Boldi and Vigna [54].

be understood as adjacency matrices. The observed vertex attributes are denoted by x. In general, we are interested
in the estimation of parameters that relate the network and vertex attributes to the probability of observing an edge.
We use an exponential random graph model (ERGM) to estimate the parameters related to the formation of a graph:
P(X = x|Y = y) = 1/κ(θ, y, x)exp(θEZE(y) + θRZR(y) +

∑C
c=3 θcZc(y, x)). The parameters of interest are denoted by θ . The

Z(.) is a function of network statistics. For example, we include the number of edges as network characteristics (ZE(y))
and the number of reciprocal edges (ZR(y)). Next, we include four vertex characteristics (Zc(y, x)).

The numerator should be normalized across all possible networks for a given number of vertices. This is accomplished
by the normalizing constant κ(θ, y, x) that ensures that the resulting distribution function is a probability distribution
function. More specifically, κ(θ, y, x) =

∑
y∈Y exp (θEZE(y) + θRZR(y) +

∑C
c=3 θcZc(y, x)). As the number of possible

networks 2(N(N−1))/2 is large even for moderately sized networks, it is not possible to estimate the normalizing constant in
a straightforward way. A Markov Chain Monte Carlo maximum likelihood estimation is carried out to estimate the sample
of graphs. More specifically, we rely on the Metropolis–Hastings algorithm to guide the creation of the sample of graphs
(see [57] for detailed information on the implementation of this algorithm).

3. Results

3.1. Topological properties of the cross-quantilogram tourism demand networks

Tables 2–4 report the in- and out-degrees along with the harmonic centrality. There are several new findings that
the networks revealed. First, we observe that irrespective of whether the networks are created by using only short-term
information (up to three months, p = 3) or long-term (up to nine months, p = 9), the networks at the same percentile
change only negligibly. This suggests that interconnectedness between international tourism demand is created mostly
during the first three months (i.e., for p = 3), as these relationships are subsumed in p = 6 and p = 9.

Second, and our most important finding in this section is that with respect to the given percentiles there is an obvious
asymmetry in the interconnectedness of international tourism demand. For example, for short-term (3 month or quarterly)



Š. Lyócsa, P. Vašaničová and E. Litavcová / Physica A 526 (2019) 120919 7

Table 4
Centrality measures for cross-quantilogram networks with p = 9.
Country Cross-quantilogram networks, p = 9

10th percentile 50th percentile 90th percentile

out-d. in-d. harmo. out-d. in-d. harmo. out-d. in-d. harmo.

Spain 10 13 13.48 6 4 11.26 0 0 0.00
Portugal 10 9 12.98 6 4 10.59 0 0 0.00
Denmark 7 6 11.26 2 1 6.39 1 1 0.77
Germany 12 4 13.88 2 1 8.57 3 0 2.74
Greece 1 1 2.19 5 5 10.25 0 0 0.00
Austria 0 0 0.00 0 0 0.00 0 0 0.00
Finland 3 18 2.61 2 8 6.85 0 0 0.00
Sweden 11 1 12.93 3 2 9.73 0 0 0.00
Switzerland 0 0 0.00 3 1 9.08 0 0 0.00
France 4 2 9.46 2 4 7.35 1 1 0.82
Italy 8 0 11.68 2 0 6.68 0 0 0.00
Netherlands 17 1 18.23 8 4 12.32 0 0 0.00
Norway 8 2 11.57 8 1 12.35 0 0 0.00
United Kingdom 0 0 0.00 4 0 9.93 0 0 0.00
Island 0 0 0.00 2 2 8.42 1 0 1.28
Belgium 0 0 0.00 1 2 5.58 0 2 0.00
Luxembourg 0 0 0.00 2 1 7.58 0 1 0.00
Slovenia 2 3 2.54 2 4 7.32 0 0 0.00
Cyprus 0 0 0.00 2 2 6.40 1 2 0.95
Hungary 7 14 11.65 2 2 7.51 0 0 0.00
Romania 16 14 16.53 5 8 9.61 0 0 0.00
Czech Republic 7 5 11.31 2 3 7.44 0 0 0.00
Bulgaria 4 6 3.46 4 2 8.62 0 0 0.00
Poland 17 2 17.93 2 1 7.41 0 0 0.00
Slovakia 3 20 2.86 4 4 9.75 1 0 1.26
Croatia 8 3 11.13 2 1 7.47 0 0 0.00
Latvia 3 18 2.72 1 11 4.85 0 1 0.00
Malta 8 7 11.66 5 3 10.23 1 0 1.24
Estonia 0 0 0.00 3 4 7.53 0 0 0.00
Lithuania 3 20 2.76 1 8 7.08 0 1 0.00

Average 5.63 7.16 3.10 8.14 0.30 0.30

Notes: out-d. denotes the out-degree of the vertex, in-d. denotes the in-degree of the vertex, and harmo denotes the harmonic centrality of the vertex, as
in Boldi and Vigna [54].

interconnectedness, at the 10th percentile, international tourism demand is strongly interconnected. The average degree
is 6.00, and harmonic centrality is 10.11. At the 50th percentile, international tourism demand is less interconnected; the
average degree is halved at 2.77, and harmonic centrality is 6.24. At the 90th percentile, the interconnectedness almost
disappears, as the network has an average degree of just 0.17, and harmonic centrality is 0.21. This obvious asymmetry
is also observed in Fig. 1. Therefore, during declines, international tourism demand appears to be quite similar across
countries, as it shows strong signs of interconnectedness, while during good times, international tourism demand is more
segmented. This asymmetry is also observed for networks created when considering possible mid- (p = 6, Fig. 2) and
long-term (p = 9, Fig. 3) relationships.

Third, we identified that the most important ‘hubs’ in the 10th percentile networks are represented by countries
as Spain, Romania, Hungary, Germany, Lithuania and Portugal. Interestingly, the most influential (in Granger sense) is
the international tourism demand of Romania that influences international tourism demand of 18 countries, followed
by Germany (15), Spain and Hungary (both 14). Therefore, for these countries, international tourism demand is most
informative with respect to next month’s international tourism demand of other markets. On the other hand, the most
sensitive is the market of Lithuania with 19 in-degrees of international tourism demand, followed by Spain (18), and
Hungary (16). Results in Tables 2–4 also reveal a general tendency, where international tourism demand of CEE countries
is more likely to be interconnected in the left-tail (higher in- and out-degrees) compared to non-CEE countries.

3.2. Mechanics behind the cross-quantilogram tourism demand networks: ERGM approach

It is unlikely that the structures identified in the cross-quantilogram network could appear by chance. In this section,
we review the possible forces that are likely to drive the formation of the resulting complex structure of relationships.
We rely on the ERGM framework. We consider two network statistics, the number of edges and the number of reciprocal
relationships, and four vertex (country) attributes.

Because of economic transformation, the tourism industry in CEE countries is still underdeveloped. To account for the
presence of these markets, we included a variable that should capture the likelihood of an edge forming from and to the
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Fig. 1. Cross-quantilogram networks of international tourism demand, p = 3. Notes: The thickness of the edges corresponds to the size of the directed
relationship. A darker vertex indicates a stronger weighted out-degree (weighted by the strength of the directional relationships), and a larger vertex
indicates a stronger weighted in-degree.

CEE market. More specifically, the first vertex attribute is an indicator variable that assumes the value of 1 if the given
country is from the CEE and 0 otherwise.

The tourism sector in countries that have not adopted the Euro currency might be subject to more foreign exchange
risks, which in turn could make them more vulnerable to swings in international tourism demand. We therefore study
whether the adoption of the Euro currency is associated with increased or decreased interconnectedness of international
tourism demand. The second vertex attribute is also an indicator variable that assumes the value of 1 if the given country
adopted the Euro currency and 0 otherwise.

The descriptive statistics (see Table 6) also suggest that more developed countries, with respect to tourism, might have
more segmented international tourism demand behavior; i.e., they are less interconnected with other countries in Europe.
The overall development of the tourism sector is measured by the average ratio of the total international tourism receipts
(revenues from international tourists) to the GDP of the country in nominal terms over the observed time interval. The
third vertex attribute, in our empirical model, is based on this ratio in a following way. We set the value of this attribute
for a given country to 1 if the value of this measure of tourism development is above the median (across countries) and
0 otherwise.

Finally, we also include a broad index of tourism competitiveness as the fourth vertex attribute. This index is published
by the World Economic Forum [58–61] and captures a broad view on the possibilities of a developing tourism sector in
a given country. More specifically, it evaluates the level of human, cultural and natural resources of a country, its legal
framework (with respect to tourism), its business environment and its infrastructure. Higher values indicate that the given
country has greater potential to develop tourism. Similarly as before, in our empirical model, we use a simplified version
of this variable by setting the vertex attribute to 1 if the value of the index is above the median and 0 otherwise. The
descriptive statistics of the four vertex attributes can be found in Appendix.

In Table 5, we report the estimated coefficients obtained from the ERGM estimated for networks created for p = 3, 6, 9
and at the 10th and 50th percentile respectively. We do not report results for the 90th networks that are very sparse, and
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Fig. 2. Cross-quantilogram networks of international tourism demand, p = 6. Notes: The thickness of the edges corresponds to the size of the directed
relationship. A darker vertex indicates a stronger weighted out-degree (weighted by the strength of the directional relationships), and a larger vertex
indicates a stronger weighted in-degree.

do not lead to enough variability to perform a meaningful ERGM study. Given the results in Table 5, the corresponding
probabilities can be derived in a straightforward way. For example, in the first model (p = 3 and 10th percentile),
probability of observing an edge could be calculated as follows: 1/(1+ exp(−(−2.79+ 2.54× 0− 0.41× 1− 0.41× 1+

1.43× 1+ 0.63× 1))) = 0.175. In this particular example, we are considering only the significant coefficients, and a case
with expected probability for forming an edge from a country that has adopted Euro (−0.41 × 1), that has higher level
of international tourism receipts to GDP (−0.41× 1) to a CEE country (1.43× 1) that has also adopted the Euro currency
(0.63×1). If we introduce mutuality, then the probability changes to 1/(1+ exp(−(−2.79+2.54×1−0.41×1−0.41×

1+1.43×1+0.63×1))) = 0.729; i.e., the probability of a relationship increases from 0.175 to 0.73, which is an increase
of 4.2 times. As is usual with multivariate non-linear models, the probabilities depend on the level of the other variables
in the model. Therefore, instead of focusing on probabilities, we interpret significant coefficients (at the 10% significance
level or lower), where positive coefficients suggest a positive association between the variable and the probability of an
edge.

The results in Table 5 indicate several regularities within the tourism demand networks. Most of these regularities
appear to have emerged for the 10th percentile networks. We also report the fit of the model (McFadden’s R2 [62]) and a
set of goodness-of-fit test results where we compare the fit of the simulated networks’ (from the estimated parameters
of the ERGM) properties (out-degree, in-degree distributions and geodesic distance) with the observed networks. In most
cases, the simulated networks appear to be similar to the observed network, which suggests a good fit.

Our first empirical result, which is provided in Table 5, indicates that when the tourism demand in one country
influences the tourism demand in the other country (in Granger sense), it is likely that the latter is also influencing the
former (significant and positive ‘mutual’ coefficient). This result holds for all the networks, and therefore, bi-directionality
(reciprocity of mutuality) appears to be a common characteristic of international tourism demand interconnectedness.

Our second empirical result revealed by the ERGM shows that left-tail interconnectedness from countries that adopted
Euro is less likely, as the coefficient is negative. On the other hand, adoption of Euro increased the probability that
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Fig. 3. Cross-quantilogram networks of international tourism demand, p = 9. Notes: The thickness of the edges corresponds to the size of the directed
relationship. A darker vertex indicates a stronger weighted out-degree (weighted by the strength of the directional relationships), and a larger vertex
indicates a stronger weighted in-degree.

a country is going to be influenced (in Granger sense) in the 10th and 50th percentiles. This has interesting policy
implications, as it indicates that the adoption of the Euro has actually increased the sensitivity of international tourism
demand with respect to the development on other markets.

Third, significant coefficients of the CEE variable in the Panel of ‘Vertex level determinants of in-going edges’ suggests
that tourism sectors in CEE countries are more sensitive to the negative development (networks at the 10th percentile)
of tourism in other countries.

Finally, our fourth empirical finding is that the development of the tourism sector, as measured by the ratio of the
international tourism receipts to the GDP, is negatively associated with the probability of an out-going edge from a given
country, i.e., a negative and significant coefficient. This result is partly surprising as we expected that countries with
more developed tourism sectors (higher international receipts to GDP) will be more influential (in Granger sense) in the
network, but the opposite is true as these countries tend to influence other markets less. At the same time, the more
developed countries are also less influenced (negative significant coefficients for in-going edges). Overall it appears that
the more developed countries have less interconnected international tourism demand.

4. Conclusion

We study the interconnectedness of the development of international tourism demand in Europe. We create a
directional network, where two countries (vertices) are interconnected if the international tourism demand of the first
country leads (in Granger sense) international tourism demand in the second country within p months. In addition, we
utilize the recently developed cross-quantilogram analysis, where directional relationships are determined for different
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Table 5
Estimated coefficients from the ERGM.

p=3 p=6 p=9

10th 50th 10th 50th 10th 50th

Edges −2.79d
−2.31d

−2.40d
−2.68d

−1.97d
−2.39d

Mutual relationship 2.54d 2.02d 1.36d 1.17c 0.28 −0.47

Vertex level determinants of out-going edges
Central and Eastern Europe 0.03 −0.61 0.33 −0.34 0.46 −0.36
Euro currency −0.41b

−0.31 −0.48b
−0.19 −0.42b

−0.1
International tourism receipts to GDP −0.41a

−0.04 −0.48b 0.01 −0.87d
−0.07

Tourism competitiveness index −0.24 −0.17 0.20 0.12 0.08 −0.08

Vertex level determinants of in-going edges
Central and Eastern Europe 1.43d 0.05 1.40d 0.32 1.51d 0.67a

Euro currency 0.63c 0.86c 0.96d 1.18d 0.99d 0.98d

International tourism receipts to GDP 0.08 −0.45a
−0.38a

−0.42a
−0.59c

−0.41a

Tourism competitiveness index 0.29 −0.36 −0.07 −0.54 −0.30 −0.37

Model fit (McFadden’s R2)
Unrestricted model against the null model (no parameters) 0.39 0.58 0.34 0.56 0.39 0.53

Goodness-of-fit evaluation
Out-degree 0.47 0.79 0.63 0.66 0.59 0.75
In-degree 0.49 0.71 0.61 0.83 0.66 0.65
Geodesic distance 0.81 0.73 0.79 0.77 0.77 0.76

Notes: Values in the table denote the estimated coefficients (CF). The superscripts a, b, c, and d, denote significance at the 10%, 5%, 1%, and 0.1%, respectively.
McFadden’s R2 is calculated as 1−LLUR/LLRM , where the fraction is the log-likelihood of the ratio of the unrestricted to the restricted model. Goodness-of-fit
evaluates how the simulated network’s distributions of characteristics (out-degree, in-degree, and geodesic distance) correspond to the observed network. The
reported values in the table are average p-values, values above the significance level suggest that the distribution of the simulated network’s characteristics
correspond to the observed network. To improve readability, the significant coefficients are in boldface in the table.

percentile (10th, 50th, and 90th percentile) and different lead times (p = 3, 6, 9). We thus create 9 cross-quantilogram
networks of international tourism demand and observe striking asymmetric interconnectedness.

It is found that when international tourism demand declines sharply (below the 10th percentile), it declines across
almost all markets. On the other hand, when tourism demand increases sharply (above the 90th percentile), it increases
in a segmented way. This asymmetry was found for all lags. In fact, increases are so segmented that, the average in- and
out-degree among the 30 vertices is below 1. We identify, that during declines in international tourism demand, the most
interconnected international tourism demand is that of Spain, and while also somewhat surprisingly that of Romania and
Hungary.

We further explored determinants of the likelihood of a directed edge in cross-quantilogram international tourism
demand networks using an ERGM framework. As before, we found that the results differ more for networks with different
percentiles rather than those with different lead times. Our most notable results are as follows:

• Mutual interconnectedness is a typical feature of international tourism demand networks. Thus, it is more likely that
two markets are interconnected in both directions rather than in just one direction.

• International tourism demand in CEE countries tends to be influenced more during sharp declines in international
tourism demand (below the 10th percentile).

• Countries with lower development (importance) of the tourism sector within a country tend to be more intercon-
nected with international tourism demand of other countries.

Most of our results are intuitive and support the meaningfulness of studying the complex interrelatedness of
international tourism demand through network analysis. We believe that in the future, such an analysis can be helpful to
enhance our understanding of how tourism sectors are related, who are the main propagators of shocks in tourism and
what policy steps can be suggested to mitigate the propagation of negative shocks within such networks of international
tourism demand.
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Appendix

Table 6
Descriptive statistics of the variables used in the ERGM model.
Country Euro CEE ITR/GDP Travel and tourism competitiveness index (TCI)

Adopted = 1 Member = 1 Mean Above median Mean Above median

Spain 1 0 0.04 1 5.35 1
Portugal 1 0 0.05 1 4.85 0
Denmark 0 0 0.02 0 4.71 1
Germany 1 0 0.01 0 5.35 0
Greece 1 0 0.05 1 4.6 1
Austria 1 0 0.05 1 5.12 1
Finland 1 0 0.01 0 4.75 1
Sweden 0 0 0.02 0 4.9 1
Switzerland 0 0 0.02 0 5.32 1
France 1 0 0.02 0 5.32 1
Italy 1 0 0.02 0 4.49 1
Netherlands 1 0 0.02 0 4.9 1
Norway 0 0 0.01 0 4.77 1
United Kingdom 0 0 0.01 0 5.25 1
Iceland 0 0 0.04 1 4.83 1
Belgium 1 0 0.02 0 4.75 1
Luxembourg 1 0 0.08 1 4.72 0
Slovenia 1 1 0.05 1 4.39 0
Cyprus 1 0 0.09 1 4.5 0
Hungary 0 1 0.05 1 4.31 0
Romania 0 1 0.01 0 3.94 0
Czech Republic 0 1 0.04 1 4.5 0
Bulgaria 0 1 0.07 1 4.24 0
Poland 0 1 0.02 0 4.26 0
Slovakia 0 1 0.07 0 4.24 0
Croatia 0 1 0.02 1 4.26 0
Latvia 1 1 0.02 0 4.19 0
Malta 1 0 0.13 1 4.55 0
Estonia 1 1 0.06 1 4.54 0
Lithuania 1 1 0.03 1 4.13 0

Notes: Because of the skewness in the raw data, the reported ratios of international tourism receipts (ITR) to gross domestic product (GDP) are
natural logarithms of the original ratio.
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